234 research outputs found

    Simultaneous state and input estimation with application to a two-link robotic system

    Full text link
    This paper addresses the problem of estimating simultaneously the state and input of a nonlinear system with application to a two link robotic manipulator - the Pendubot. The system nonlinearity comprises a Lipschitz function with respect to the state, and a nonlinear term which is a function of both the state and input. It is shown that under some conditions, an observer can be designed to estimate simultaneously the system&rsquo;s state and input. Simulation and experimental results, obtained around the inverted equilibrium position, are presented to demonstrate the validity of the approach.<br /

    CURRENT SITUATION OF STUDENTS’ PSYCHOLOGICAL STATE BEFORE PRACTICAL COURSES’ FINAL EXAMS

    Get PDF
    The article aimed to determine the factors influencing students’ psychological state before the final exam of practical courses. The article used conventional scientific research methods in sports and physical training combined with psychological tests studied on fifty students at Ho Chi Minh City University of Physical Education and Sports (UPES). After reviewing related studies and consulting with experts, four tests were employed to assess the psychological state before the test of the research subjects. The results showed that students with a good psychological state to take the exam had good test results. Conversely, students with a feverish or lethargic state will have poor test results. The research results serve as the basis for proposing measures to adjust the psychological state before the exam, contributing to improving the learning results of students.  Article visualizations

    When Virtual Reality Meets Rate Splitting Multiple Access: A Joint Communication and Computation Approach

    Full text link
    Rate Splitting Multiple Access (RSMA) has emerged as an effective interference management scheme for applications that require high data rates. Although RSMA has shown advantages in rate enhancement and spectral efficiency, it has yet not to be ready for latency-sensitive applications such as virtual reality streaming, which is an essential building block of future 6G networks. Unlike conventional High-Definition streaming applications, streaming virtual reality applications requires not only stringent latency requirements but also the computation capability of the transmitter to quickly respond to dynamic users' demands. Thus, conventional RSMA approaches usually fail to address the challenges caused by computational demands at the transmitter, let alone the dynamic nature of the virtual reality streaming applications. To overcome the aforementioned challenges, we first formulate the virtual reality streaming problem assisted by RSMA as a joint communication and computation optimization problem. A novel multicast approach is then proposed to cluster users into different groups based on a Field-of-View metric and transmit multicast streams in a hierarchical manner. After that, we propose a deep reinforcement learning approach to obtain the solution for the optimization problem. Extensive simulations show that our framework can achieve the millisecond-latency requirement, which is much lower than other baseline schemes

    Toward BCI-enabled Metaverse: A Joint Learning and Resource Allocation Approach

    Full text link
    Toward user-driven Metaverse applications with fast wireless connectivity and tremendous computing demand through future 6G infrastructures, we propose a Brain-Computer Interface (BCI) enabled framework that paves the way for the creation of intelligent human-like avatars. Our approach takes a first step toward the Metaverse systems in which the digital avatars are envisioned to be more intelligent by collecting and analyzing brain signals through cellular networks. In our proposed system, Metaverse users experience Metaverse applications while sending their brain signals via uplink wireless channels in order to create intelligent human-like avatars at the base station. As such, the digital avatars can not only give useful recommendations for the users but also enable the system to create user-driven applications. Our proposed framework involves a mixed decision-making and classification problem in which the base station has to allocate its computing and radio resources to the users and classify the brain signals of users in an efficient manner. To this end, we propose a hybrid training algorithm that utilizes recent advances in deep reinforcement learning to address the problem. Specifically, our hybrid training algorithm contains three deep neural networks cooperating with each other to enable better realization of the mixed decision-making and classification problem. Simulation results show that our proposed framework can jointly address resource allocation for the system and classify brain signals of the users with highly accurate predictions

    Optimizing Boiler Efficiency by Data Mining Teciques: A Case Study

    Get PDF
    In a fertilizer plant, the steam boiler is the most important component. In order to keep the plant operating in the effective mode, the boiler efficiency must be observed continuously by several operators. When the trend of the boiler efficiency is going down, they may adjust the controlling parameters of the boiler to increase its efficiency. Since manual operation usually leads to unex-pectedly mistakes and hurts the efficiency of the system, we build an information system that plays the role of the operators in observing the boiler and adjusting the controlling parameters to stabilize the boiler efficiency. In this paper, we first introduce the architecture of the information system. We then present how to apply K-means and Fuzzy C-means algorithms to derive a knowledge base from the historical operational data of the boiler. Next, recurrent fuzzy neural network is employed to build a boiler simulator for evaluating which tuple of input values is the best optimal and then automatically adjusting controlling inputs of the boiler by the optimal val-ues. In order to prove the effectiveness of our system, we deployed it at Phu My Fertilizer Plant equipped with MARCHI boiler having capacity of 76-84 ton/h. We found that our system have improved the boiler efficiency about 0.28-1.12% in average and brought benefit about 57.000 USD/year to the Phu My Fertilizer Plant

    Enhancing Few-shot Image Classification with Cosine Transformer

    Full text link
    This paper addresses the few-shot image classification problem, where the classification task is performed on unlabeled query samples given a small amount of labeled support samples only. One major challenge of the few-shot learning problem is the large variety of object visual appearances that prevents the support samples to represent that object comprehensively. This might result in a significant difference between support and query samples, therefore undermining the performance of few-shot algorithms. In this paper, we tackle the problem by proposing Few-shot Cosine Transformer (FS-CT), where the relational map between supports and queries is effectively obtained for the few-shot tasks. The FS-CT consists of two parts, a learnable prototypical embedding network to obtain categorical representations from support samples with hard cases, and a transformer encoder to effectively achieve the relational map from two different support and query samples. We introduce Cosine Attention, a more robust and stable attention module that enhances the transformer module significantly and therefore improves FS-CT performance from 5% to over 20% in accuracy compared to the default scaled dot-product mechanism. Our method performs competitive results in mini-ImageNet, CUB-200, and CIFAR-FS on 1-shot learning and 5-shot learning tasks across backbones and few-shot configurations. We also developed a custom few-shot dataset for Yoga pose recognition to demonstrate the potential of our algorithm for practical application. Our FS-CT with cosine attention is a lightweight, simple few-shot algorithm that can be applied for a wide range of applications, such as healthcare, medical, and security surveillance. The official implementation code of our Few-shot Cosine Transformer is available at https://github.com/vinuni-vishc/Few-Shot-Cosine-Transforme

    Reconstructing Human Pose from Inertial Measurements: A Generative Model-based Compressive Sensing Approach

    Full text link
    The ability to sense, localize, and estimate the 3D position and orientation of the human body is critical in virtual reality (VR) and extended reality (XR) applications. This becomes more important and challenging with the deployment of VR/XR applications over the next generation of wireless systems such as 5G and beyond. In this paper, we propose a novel framework that can reconstruct the 3D human body pose of the user given sparse measurements from Inertial Measurement Unit (IMU) sensors over a noisy wireless environment. Specifically, our framework enables reliable transmission of compressed IMU signals through noisy wireless channels and effective recovery of such signals at the receiver, e.g., an edge server. This task is very challenging due to the constraints of transmit power, recovery accuracy, and recovery latency. To address these challenges, we first develop a deep generative model at the receiver to recover the data from linear measurements of IMU signals. The linear measurements of the IMU signals are obtained by a linear projection with a measurement matrix based on the compressive sensing theory. The key to the success of our framework lies in the novel design of the measurement matrix at the transmitter, which can not only satisfy power constraints for the IMU devices but also obtain a highly accurate recovery for the IMU signals at the receiver. This can be achieved by extending the set-restricted eigenvalue condition of the measurement matrix and combining it with an upper bound for the power transmission constraint. Our framework can achieve robust performance for recovering 3D human poses from noisy compressed IMU signals. Additionally, our pre-trained deep generative model achieves signal reconstruction accuracy comparable to an optimization-based approach, i.e., Lasso, but is an order of magnitude faster
    • …
    corecore